SF3 mitodynamics pgc.pdf (70.68 kB)

Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy---Supplementary Figure 4: Mitochondrial dynamics RNA from PGC colony

Download (70.68 kB)
figure
posted on 11.08.2020 by Megan Rosa-Caldwell, SeongKyun Lim, Wesley S. Haynie, Lisa T. Jansen, Lauren C. Westervelt, Madeline G. Amos, Tyrone A. Washington, Nicholas Greene

Supplementary Figure 4: mRNA content of moderators of mitochondrial fusion and fission in PGC mice. A: Mfn1 mRNA content in males. B: Mfn1 mRNA content in females. C: Mfn2 mRNA content in males. D: Mfn2 mRNA content in females. E: Opa1 mRNA content in males. F: Opa1 mRNA content in females. G: Mff mRNA content in males. H: Mff mRNA content in females. I: Drp1 mRNA content in males. J: Drp1 mRNA content in females. K: Fis1 mRNA content in males. L: Fis1 mRNA content in females. * denotes Tukey-adjusted p<0.05. Males had the following sample sizes: WT-CON= 9, WT-HU= 10, PGC-CON= 9, PGC-HU= 9. Females had the following samples sizes: WT-CON= 8, WT-HU= 9, PGC-CON= 9, PGC-HU= 9.

Article Title: Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy

Authors: Megan E. Rosa-Caldwell, Seongkyun Lim, Wesley S. Haynie, Lisa T. Jansen, Lauren C. Westervelt, Madeline G. Amos, Tyrone A. Washington, Nicholas P. Greene

Abstract: Muscle atrophy is a significant moderator for disease prognosis; as such, interventions to mitigate disuse-induced muscle loss are imperative to improve clinical interventions. Mitochondrial deteriorations may underlie disuse-induced myopathies; therefore, improving mitochondrial quality may be an enticing therapeutic intervention. However, different mitochondrial-based treatments may have divergent impacts on the prognosis of disuse atrophy. Therefore, the purpose of this study was to investigate different mitochondria-centered interventions during disuse atrophy in hindlimb unloaded male and female mice. Methods: Male and female mice overexpressing PGC-1α (PGC-1α) or mitochondrially-targeted catalase (MCAT) and their respective wildtype (WT) littermate controls were hindlimb unloaded for 7 days to induce disuse atrophy or allowed normal ambulatory activity (cage control; CON). After designated interventions, animals were euthanized and tissues collected for measures of mitochondrial quality control and protein turnover. Results: While PGC-1α overexpression mitigated ubiquitin-proteasome activation (MuRF1 and Atrogin mRNA content), this did not correspond to phenotypic protections from disuse-induced atrophy. Rather, PGC-1α mice appeared to have a greater reliance on autophagic protein breakdown compared to WT. In MCAT mice, females exhibited a mitigated response to disuse atrophy; however, this effect was not noted in males. Despite these phenotypic differences, there were no clear cellular signaling differences between MCAT hindlimb unloaded females and MCAT fully loaded females. Conclusion: PGC-1α overexpression does not protect against phenotypic alterations during disuse atrophy but appears to shift catabolic pathways moderating atrophy. However, increased mitochondrially-targeted catalase activity appears to blunt disuse atrophy within highly oxidative muscles specifically in female mice.

Funding

Mitochondrial Degeneration ? the Root of Skeletal Muscle Atrophy

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Find out more...

Center for Musculoskeletal Disease Research (CMDR)

National Institute of General Medical Sciences

Find out more...

History

Select an IC:

  • AR - National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

Is this associated with a publication?

Yes

I confirm there is no human identifiable information in this dataset.

Yes

Licence

Exports

Licence

Exports